
A Hierarchical Modeling Approach to Improve

Scheduling of Manufacturing Processes

Sebastiano Gaiardelli, Stefano Spellini, Michele Lora, Franco Fummi

Department of Computer Science

University of Verona, Italy

name.surname@univr.it

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://https://www.doi.org/10.1109/ISIE51582.2022.9831468

Abstract—Timely response to sudden production events and
requirements shifts is a key feature of Industry 4.0. It requires
techniques to manipulate and optimize the production processes,
and components providing an high degree of reconfigurability.

To acknowledge to such demands, this paper presents a
multi-level and hierarchical approach to manufacturing processes
modeling. Models are structured to represent the production
hierarchically: partitioning recipes in a set of tasks, allocated to
machines’ manufacturing services and expressed as a sequence
of elementary actions. Then, we propose a run-time scheduling
algorithm able to exploit the novel structure given to knowledge
by the proposed modeling approach. The algorithm aims at
minimizing the makespan while maximizing machines utilization.

We validate the contributions of this paper on a full-fledged
production line. The modeling strategy has been implemented in
SysML: a well-known systems modeling language. The experi-
ments show the presented model and the proposed scheduling
approach enabling a more precise and more performing control
over the manufacturing process.

Index Terms—Process modeling, process control, scheduling

I. INTRODUCTION

Knowledge representation in production processes is a

fundamental step for transitioning to “Smart Manufacturing”

and Industry 4.0 [1], coping with modern market trends.

Typically, a production process is executed by specialized

machines, each having precise capabilities and characteristics.

Therefore, creating a production process, commonly referred

to as Production Recipe, means defining the set of production

tasks, their dependencies, and the set of machines able to carry

on the defined tasks. On a production line, different recipes

may be executed in parallel and they may need to co-exist

while guarantee a certain level of performance. Furthermore, to

manage unexpected events efficiently, a production line must

be able to interrupt, reallocate and reschedule.

Modern paradigms, such as on-demand production, require

to restructure how the concept of recipe is being expressed

and represented. This is especially true in Service-oriented

Manufacturing [2] architectures, which organizes the work

of the machines as a set of services. Each service carries

out a specific machine’s functionality and can be executed

on-demand by the system’s software architecture. Therefore,

a tasks composing a recipe may be further characterized as

This work is supported by the European Commission through the project
DeFacto (grant n. H2020-MSCA-IF-894237), and by the Ministry of Educa-
tion, University and Research “Dipartimenti di Eccellenza” 2018–2022 grant.

Figure 1: Overview of the proposed conjunction of hierarchical
production model with a multi-layer scheduling algorithm. The
knowledge encapsulated in the model enables advanced scheduling
decisions (e.g., interleaving). The proposed modeling and scheduling
approach (bottom) allows achieving better performance than the
classical task-based representation of production recipes (top).

a set of services. In addition, services may have one or

more pre and post-conditions for their correct execution, as

well as dependencies with other services. Thus, tasks may

be implemented as a logical flow of services, with branches

and cycles. Therefore, to correlate all those aspects and,

possibly, the interaction with human operators, a structured

representation of the production processes is needed [3].

Figure 1 depicts the contribution of this paper. Rather than

relying on models for production processes based solely on the

tasks composing a recipe (top part of the Figure), we propose a

multi-level, hierarchical model for production processes which

allows achieving better scheduling performance (bottom). The

model is structured over three levels, each of them modeling

a different abstraction of the production process:

• the task level consists of a task-resources graph. It allows

describing the bones of the production process, which are

the tasks, their dependencies and the machines on which

such tasks can be allocated.

• The service level refines the concept of “task”, describing

the sequence of steps required to be carried out to

complete the task. It consists of a directed graph where

the edges express the execution flow and each node

identify a step of the task.



• The machine function level describes the interactions that

need to take place between the control software and the

machine implementing a service as a directed graph.

Therefore, it allows exploiting the basic functionalities

provided by the machine to create more complex services.

As each abstraction level carries different information, we

also propose a scheduling algorithm exploiting the informa-

tion structured in the three different abstraction levels of

the proposed model. The algorithm takes advantage of the

restructured information to make more precise decisions on

whether a process can be interrupted, interleaved and pre-

empted, thus potentially improving the performance of the

production system. Furthermore, the scheduler is reactive: it

is able to react to unforeseen events (e.g., new high-priority

orders or machine’s failures) and reschedule the production.

We demonstrate the applicability of the proposed approach

by modeling a production process on a full-fledged reconfig-

urable manufacturing system. The equipment in the production

line is monitored and controlled by a software layer based on

the OPC Unified Architecture (OPC UA). Machine capabilities

and production processes have been modeled by following

the approach proposed by this paper. We built the models

using System Modeling Language (SysML) which provides

an intuitive, standardized graphical language, as well as ma-

chine readable formats for data exchange. Thus, making more

practical both modeling activities and the automation of the

entire contribution. We evaluate the results of the proposed

model-based scheduling algorithm. We show how exploiting

hierarchically structured information allows increasing the

average machine utilization and throughput, while minimizing

the makespan, especially of high-priority orders.

II. STATE-OF-THE-ART

In this Section, we analyze the state-of-the-art on scheduling

techniques in manufacturing. Furthermore, we clarify the

contribution proposed by this paper by evaluating models and

standards currently used to describe production processes.

A. Production Scheduling

A good production scheduling is crucial to execute effi-

ciently manufacturing processes. An optimal schedule allows

increasing the productivity, maximizing throughput, and mini-

mizing delay and interruption of production. In manufacturing,

a schedule is an optimal allocation of recipes in a specific time-

frame [4]. This problem is known as Job Shop Scheduling

(JSS) [5] and Flexible Job Shop Scheduling (FJSS) [6]. In

the literature, there are a plethora of solutions based on static

techniques that guarantee optimal solutions. However, this is

an approximation of the real problem, known as Dynamic

Flexible Job Shop Scheduling (DFJSS) [7].

Practical scheduling problems are proved to be NP-hard [8]

and, therefore, difficult to solve due to the number and variety

of jobs and potentially conflicting goals. In the literature, there

are many proposed solutions to solve the scheduling problems.

Most of dynamic techniques are based on Artificial Intelli-

gence methodologies, such as Ant Colony Optimization [9],

Particle Swarm Optimization [10], Artificial Bee Colony [11]

and Genetic Algorithms [12]. There are also other solutions

falling into the static scheduling category, based on state-

space search algorithms: Partial Order Planning [13], PERT

Method [14], Mixed Integer Linear Programming (MILP) [15],

and Constraint Satisfaction Programming (CSP) [16]. When

manufacturing systems encounter unexpected conditions, such

as machine breakdown, rush orders and process time delay, the

schedule produced by the aforementioned techniques may no

longer be optimal or may become infeasible. [17] proposes an

hybrid approach: a static scheduling phase, exploiting MILP

optimization, while a run-time scheduler is able to react to

production changes and unexpected events. The ability of such

a scheduling technique to efficiently react is limited to the

amount of knowledge used by the algorithm to make decisions.

Thus, it is limited by the models of the production processes

and capabilities available to the scheduler.

B. Production Modeling

Scheduling techniques implement a particular optimization

model, that is strictly related to both the parameter(s) to

optimize and the constraints of the system. Two popular

mathematical optimization models in such a context are

Resource Task Networks (RTNs) [18] and State Task Net-

works (STNs) [19]. Both focus on formalizing the production

recipes as a directed graph. The main difference between

STN and RTN is that the former concentrates on expressing

the sequence of material states associated to tasks, while

the latter also explicitly includes the allocation of tasks and

resources to physical machines. Therefore, the information

on such models is limited to the recipe viewpoint, without

any knowledge on how tasks are implemented by machines

and, thus, without any information about control aspects. To

structure recipes within manufacturing information systems

(i.e., Manufacturing Execution Systems (MESs)), different

standards have been developed in the past. For example,

International Society of Automation (ISA)-95 and 88 provide

a consistent terminology to define basic components of a

production recipe, such as tasks, materials and pieces of

equipment. Furthermore, multiple XML-based languages have

been developed to concretely express the concepts present

in the standard. As an example, Business To Manufacturing

Markup Language (B2MML) [20] and Automation Markup

Language (AutomationML) [21] can be used to define not

only the production process viewpoint, but also the topology

and the architecture. Recent works [22] [23] proposed to

unify the manufacturing system knowledge in SysML, also

enabling models reuse. However, authors concentrated their

efforts on architectural and control models and, therefore, did

not propose a unified representation for production processes.

To the best of authors’ knowledge, a model capable of

representing the production in a hierarchical structure has not

been proposed. In fact, the analyzed models and standards

are focused on a single conceptual production level, such as

the recipe level or the control automation level. Meanwhile, a



unified model, able to capture at different abstraction levels,

the different aspects of a production process, is still missing.

III. HIERARCHICAL PROCESS MODEL

In the following we present the proposed modeling strategy

for production processes. The model is organized through three

layers of knowledge, each depicting a particular abstraction

perspective: the layers span from a high-level representation

of production recipes as a set of tasks, to the sequence of

functions that realize the actual machines. This section will

provide a in depth presentation of the three levels, paired with

their exemplification on the example depicted in Figure 2. The

figure reports the model of a production process modeled using

the proposed three-layer representation. The example shows a

production recipe composed of four tasks, which are “T1”,

“T2”, “T3” and “T4”. In the uppermost layer, the production

recipe is split into the four tasks, which are associated to a

subset of capable machines. Then, each task is further refined

in the middle layer, where a task is composed of a sequence of

services. The concept of service is realized through different

implementations. For instance, a service may be related to

the behavior of a machine or an interaction with a sensor

or an information system (i.e., the MES). These services are

further refined in a lower layer, defining precise machine

functionality implementing the behavior represented by the

service. For example, the bottom layer of Figure 2 depicts the

specification of the pick service modeled as a sequence of four

machine functions. The “Pick” service is related to a robotic

manipulator arm. As such, it outlines the ability of the arm to

physically pick an object within its operating space. While the

Figure 2 reports only the specification of the “Pick” operation,

the same type of lower level representation is available for

all the services. The ensemble of the three levels provides a

complete description of the production process, spanning from

a business-oriented viewpoint to a control-focused perspective.

A. Task Level

At the highest abstraction level of the representation, a

production recipe is modeled as set of tasks. Concretely, it

is expressed by a task-resource graph, which is similar to a

RTN. The nodes of the network represent tasks and the solid

edges describe a partial order over the execution of the tasks,

as shown in the upper layer of Figure 2. Each task identifies

a different macro-step of the recipe, and is characterized by

the required raw materials and the transformed material states.

In addition, one or more machines are associated to each task

(dashed edges in Figure). A machine is associated to a task

if it provides the functionalities required to carry out such

a task. Moreover, a set of attributes annotates the relations

between machines and tasks. The attributes, specifically, are

the execution time, the hourly cost, the electrical consumption,

the estimated efficiency and the necessary tools. For the sake

of clarity, such a set of information is not reported in Figure 2.

The proposed model allows representing all the alternative

sequences and allocations choices allowing to carry out a task.

Figure 2: An example of the proposed three-layer representation. The
first layer defines the set of tasks and their allocation onto machines.
The second layer depicts “services” specified in a control flow
graph implementing the task T2. The third layer outlines machines’
functions implementing the Pick a service.

B. Service Level

The second level refines the tasks-resources representation

defined in the upper level. Current manufacturing systems are

more and more based on the concept of Service-oriented Man-

ufacturing, which models the interaction with the machines

and sensors through services. Therefore, to describe all the

steps in which a task is composed, it is necessary to portray the

relation between tasks and services. For this reason, the second

layer describes the sequence of services called to complete the

task. Its representation consists of a control flow graph. Each

node in the graph represents either a service or a control flow

statement. Control flow statements model either the definition

of variables, arithmetical operations, conditional and iterative

clauses, enabling the representation of complex logical flows

of services. Edges in the graph specify the order in witch the

behaviors determined by the nodes are executed. A service can

be either a machine service or an infrastructure service:

• a machine service models a machine behavior as a

sequence of simpler operations called machine functions.

• An infrastructure service models the interaction with

sensors, actuators and computational resources available

in the production system.

Each service is characterized by a set of input parameters,

constants and output parameters used by the control flow

statements. Then variables defined in a task have global scope

with respect to the production recipes, allowing to share

variables between subsequent tasks. In addition, infrastructure

services allow pausing a task being executed at the end of each

machine service. Thus, the model allows identifying when the

task can be preempted in favor of higher priority tasks.

Regarding Figure 2, the service level models a task request-

ing two raw materials before assembling them. In the example,



the possibility to stop the task after the pick machine service

is enabled by the model. Therefore, this level, combined with

the upper level, allows scheduling the task execution as a set

of sub-tasks. This, in particular, grants executing high-priority

tasks more efficiently, filling the machines’ dead times and,

consequently, implementing interleaving.

C. Machine Function Level

A sequence of sub-services refines the services defined in

the second layer. The purpose of the machine function level

is to model the actual control behaviors through machine

functions. In this regard, machine functions are implemented

as behaviors at the Programmable Logic Controller (PLC)

level. Each function is characterized by a set of input and

output parameters that can be either variables or constants.

Unlike the upper levels, the variables defined within the

machine function have private scope. Therefore, each construct

also have input and output parameters allowing to access the

outer scope. In addition, by integrating the knowledge about

the service implementation, this level allows precise machine’s

reconfiguration. Indeed, the scheduler could propose the adop-

tion of new machine functions, better suited to implement the

task according to the actual state of the plant.

With regards to the example reported in Figure 2, the control

function “Pick” is refined in a sequence of four machine

functions: (1) move the robotic arm, (2) close the gripper,

(3) move back the arm, and (4) open the gripper to release

the material. This level allows planning the execution of the

machine services, taking into consideration when a precise

atomic function will take place. In fact, it also allows getting

a more precise estimation of the time required to carry out a

sub-task. Consequently, it enables a better forecast on when

certain materials are necessary and on the used tools. It can

also be exploited to further optimize the process, to minimize

the machines’ setup and waiting times.

It is also necessary to assume that flattening the hierarchy

is not a viable option. In fact, the model does not allow to

conceptually consider a machine function or a service as a

task, to include every possible information within a single

level. The reason for such a limitation is that, by doing so, the

data on machine’s status during the execution of a function or

a service would be lost. Therefore, a task could be wrongly

preempted, leaving some unprocessed materials in buffers or

dropping the machine in an unrecoverable state.

IV. SERVICES-BASED SCHEDULING

In this section, we propose a reactive-dynamic schedul-

ing algorithm exploiting the proposed three-level modeling

approach. The scheduling algorithm exploits the information

represented in the model, aiming at minimizing the makespan

of the production while maximizing the machine utilization.

The algorithm exploits the increased granularity of the model

to schedule the sub-tasks (i.e., services) specified within the

tasks. Furthermore, knowing the encapsulated services within

a sub-task, it is possible to identify the required resources (i.e.,

tools, materials etc.). This allows to schedule these sub-tasks

taking into account the various delays, such as waiting times

for the retrieval of missing resources.

A. Problem Statement

Let M be a set of the machines available in the production

system. Let R = {r1, r2, . . . , rn} be the set of recipes. The

relation Rp = {(rn, pn) | rn ∈ R, pn ∈ N} associates a recipe

rn with a priority pn. Let Tn = {t1, t2, . . . , tn} the set of tasks

of a recipe n. For each task ti ∈ T , STi = {sti1, sti2 . . . , stij}
is the set of sub-tasks of ti, as modeled in the hierarchical

representation of the production process. The set of possible

allocations between sub-tasks STi and machines M is defined

by the relation PA = {(stij ,mk, dij) | stij ∈ STi,mk ∈
M,dij ∈ N}, where dij is the duration of the sub-task

stij allocated on the machine mk. The actual allocation

between sub-tasks and machines is formalized as a relation

S = {(stij ,mk, dij , τij) | stij ∈ STi,mk ∈ M,dij ∈
N, τij ∈ Z

+}, where τij is the starting time of the sub-task

on a machine expressed as positive integer number.

The scheduling algorithm searches for an assignment S

minimizing the makespan while maximizing the machine uti-

lization Uk. The makespan MS is computed as the difference

between the starting time of the latest allocated sub-task plus

its duration, and the starting time of the first allocated sub-task:

MS = max
∀stij∈S

(τij + dij)− min
∀stij∈S

τij (1)

The machine utilization uk, is defined as a percentage of the

total production time in which the machine k is busy:

Uk =

∑
∀⟨stij ,mk⟩∈S dij

MS
· 100 (2)

B. Scheduling Algorithm

The scheduling algorithm takes decisions based on the

information stored in the model and the priorities assigned

at runtime to the recipes. In particular, whenever a new order

arrives, the recipes of the requested products are added to the

set of recipes to be scheduled. Meanwhile, in case of delays

or machine unavailability, the priority of the corresponding

recipe is lowered. This allows to allocate other tasks that

are actually “runnable”, optimizing the machines utilization.

Once the missing materials or machines become available,

the priority of the tasks is restored. Then, the scheduler is

invoked each time an unexpected event occurs. An unexpected

event could be the arrival of new orders, delays in retrieving

materials or machines incorrectly set-up for an allocated task.

The algorithm is made of two procedures. The first is

described by the Algorithm 1. Its main functionality is to

update the schedule S at each invocation. In particular, at

line 1, the procedure retrieves the current time. Lines 2-6

remove from the previous schedule all the sub-tasks that are

not already allocated and started on a machine at time τ . Line 7

sorts the set of recipes according to their priority. We chose this

sorting parameter to handle high-priority orders first. Then, the

algorithm evaluates each sorted recipe (line 8-12). For each

rn ∈ R, and each task ti ∈ Tn, the algorithm invokes the

support function assign(ti) (line 10).



Algorithm 1 Service-based Scheduling

1: τ ← getCurrT ime()
2: for {(stij ,mk, dij , τij)} in S do

3: if τ < τij then

4: S ← S \ {(stij ,mk, dij , τij)}
5: end if

6: end for

7: R← sort R by p
8: for rn in R do

9: for ti in Tn do

10: assign(ti)
11: end for

12: end for

Algorithm 2 Assign function

Input: ti

1: for stij in ti do

2: if stij in S then

3: skip
4: end if

5: st m← 0
6: st end←∞
7: st τij ←∞
8: for {(stij ,mk, dij)} in PA do

9: τij = findFreeT imeSlot(stij ,mk)
10: if (τij + dij) < st end then

11: st m← m
12: st τij ← τij
13: st end← (τij + dij)
14: end if

15: end for

16: S ← S ∪ {(stij , st m, dij , st τij)}
17: end for

Algorithm 2 describes the assign(ti) function. It provides

a machine assignment for every sub-task composing a task. It

does so by searching for unused time slots in the schedule of

each machine. Therefore it aims at maximizing the busy-times

of machines and, thus, at maximizing the utilization of such a

piece of equipment. The function only schedules sub-tasks that

are not executed or already allocated. In fact, as implemented

in lines 2-4, the algorithm checks whether the sub-task stij

is included in the set of sub-task already allocated S. If it is,

the sub-task is skipped. Lines 5-7 define local variables used

to save the best solution found, which is the first machine that

is able to complete the sub-task. For each possible allocation

in PA, the algorithm searches (lines 8-15) for the best one,

identified as the earliest starting sub-task on a machine mk.

The function findFreeT imeSlot(stij ,mk) at line 9 retrieves

the starting time-slot of the sub-task stij executed by the

machine mk. In particular, the function searches the first free

time-slot capable of containing stij , within the schedule S

of the machine mk. It also considers the machine function

layer of the model, to assess whether a dependency within two

sub-tasks composing the same task is present. A dependency

means that the sub-tasks may share resources (i.e., materials)

and, thus, must be allocated on the same machine. In such a

situation, the function returns +∞. Lines 10-14 check whether

the time-slot found by the findFreeT imeSlot(. . . ) function

is better than the one found in the previous cycle. In such a

case, the sub-task is allocated to the machine (lines 11-13) at

Milling

Machine

3D

Printer

Robotic

Assembly

QC

Station

Production Processes

Scheduler

Tasks

Services

Functions

Plant

Model OPC UA Services

Products recipes

QC Robotic 3D Milling

Unexpected External Events

Cmds
Plant

Status

M
u

lt
i-

le
v
el

M
o

d
el

Figure 3: Experimental setup used to assess the methodology. The
three-level model of the production processes is built by modeling
the production recipes and the manufacturing line equipment. Then,
this representation is used to implement a service-based scheduler.
Lastly, the scheduler is executed in a real production environment.

the found time-slot, and then the schedule is updated (line 16).

The algorithm also maximizes the utilization of the ma-

chine: a more granular representation of tasks as sub-tasks

allows the scheduler to allocate sub-tasks in smaller time-slots

than tasks. This allows to better exploit the unused time of the

machines. With regards to equation 2, the implemented alloca-

tion strategy allows shrinking the gap between the numerator

and denominator. The complexity of the algorithm is linear on

the cardinality of S; the complexity of the findFreeTimeSlot is

also linear as it relies on interval trees.

V. APPLICATION AND EXPERIMENTAL RESULT

Figure 3 summarizes the experimental setup used to eval-

uate the advantages the proposed approach. We applied the

presented modeling and scheduling techniques to the full-sized

manufacturing line. The plant consists of two 3D Printers, a

Quality Control Cell, a collaborative Robotic Cell, a CNC

Cell, and a vertical warehouse. The system is able to im-

plement the Service-oriented Manufacturing paradigm: each

machine exposes to the user its functionalities as a set of

services. The communication is realized through the OPC UA

protocol: a well-known standard for industrial machine com-

munication [24]. Furthermore, the system is governed by a

commercial MES communicating with the machines.

The production recipes have been modeled according to the

three-level modeling approach. Each level in the models are

expressed using SysML activity diagrams. SysML provides an

intuitive graphical language, explicitly tailored to express the

structure and behavior of complex systems. Thus, SysML aims

at easing the specification and modeling phase for all the three

levels of the production model. Furthermore, SysML supports

the XML Metadata Interchange (XMI): an XML-based for-

mat easing data exchange, manipulation, and analysis. Thus,

allowing to easily implement procedures able to analyze and

manipulate the data carried by models.



We implemented the algorithm to be able to take as input the

proposed three-level model expressed using the SysML syntax.

The algorithm implementation is interfaced with the MES to

monitor unexpected external events. Finally, it interfaces with

the OPC UA servers deployed on the production plant, in order

to monitor the state of the system, and to send commands to

the machines to execute the decisions the algorithm takes.

This section, first describes how production recipes are ex-

pressed in SysML, while following the proposed hierarchical

modeling strategy. Then, we provide more details about the al-

gorithm implementation and its interfacing with the production

plant’s infrastructure. Lastly we report the results obtained by

exploiting the implemented scheduler. We compare the results

to those achieved by using the native scheduler provided by

the commercial MES governing the system.

A. Implementation

The production recipes described by applying the proposed

hierarchical modeling approach are concretely expressed using

SysML. Each level described in Section III is modeled as an

activity diagram. We started defining the data types related

to task, service, and machine: the essential types allowing to

express all the information necessary within each model. Then,

we described the production recipes at the first level of the

hierarchy. We modeled the nodes of the graph as an object

of type task, on which we specified the parameters, such as

name, materials, etc.. Each task is assigned to one or more

machine objects. On these objects, we specified the parameters

related to the machine-task relation, such as tools, electrical

consumption, execution time, etc.. The dependencies between

tasks are specified through control-flow arrows.

Each task described in the first level is further refined at

the second level of the hierarchy. The correspondent nodes

of the graph are represented as an object of type service.

The service nodes store the information of each service, i.e.,

inputs, outputs, etc.. Thus, leading to activity diagrams as the

one reported in Figure 4. It represents the service-level model,

expressed as a SysML activity diagram, of task T2 of the case

study previously shown in Figure 2.

Furthermore, the model is annotated with the information

about the calls to the OPC UA protocol required to invoke

each service. The order of OPC UA service calls is modeled

by using control-flow arrows, while conditional branching in

invocation sequences is modeled by decision nodes.

Finally, each machine function represented in the lower

level is also modeled by a SysML activity diagram. The

activity diagram models the PLC behaviors related to machine

service. The nodes of the graph are modeled as an object of

type service, which contains the information related to PLC

functionalities, such as inputs, outputs, etc.. The nodes of

the graph are specified with control-flow arrows that allow

modeling the sequence of the low-level services.

We automatically extract the essential information stored in

the XMI description of the SysML model, and we store such

information into a JSON file. This representation will provide

the input to our implementation of the algorithm described

Figure 4: Service-level model of the task “T2” represented as a
SysML activity diagram. It expresses all the information contained
in the second level of our proposed model. Each node is specified
by a typed object. The arrows describe the edges of the graph in the
middle layer of Figure 2.

in section IV. The scheduler is implemented on top of a

Service Oriented Manufacturing (SOM) software architecture,

extending the functionalities of its automation software com-

ponent. More specifically, the scheduler is embedded into the

Automation Manager [25], which interacts with the MES and a

set of servers providing access to the manufacturing machines.

It retrieves from the MES the set of production orders and the

attached bills of materials. The closed-loop communication

between the scheduler, the Automation Manager and the

MES allows interracting with the machines, retrieving the

current state of the plant, and fetching new orders. The a

communication is carried out through the OPC UA protocol.

B. Results and discussion

We compare the results obtained by the scheduler imple-

mented by the commercial MES, which relies on a classi-

cal RTN-based task representation, against our service-based

scheduler, which exploits the proposed hierarchical informa-

tion model. Table I reports the result obtained with the two

different approaches. As a benchmark, we input 450 produc-

tion processes instances (i.e., production orders), randomly

generated from a pool of 4 different recipes. The first row

compares the total makespan obtained by the two approaches,

calculated using Equation 1 and Equation 2. The proposed

scheduler is able to reduce the total execution time needed to

complete the 450 orders by almost 40 minutes. Thus, providing

an improvement of 3.1% with respect to the state-of-the-

practice approach. The next three lines show the comparison

of the average amount of time in which the machines are not

used (e.g., the change time), the average machines utilization,

and the throughput. The proposed approach decreases the av-

erage change time, while increasing both the average machine

utilization and the system throughput. Thus, the proposed

approach successfully hits its target of reducing the makespan,

while increasing the average machine utilization.

The improvement is due to the scheduling algorithm en-

abling a more precise interleaving than the traditional task-

resources representation. In fact, dividing one task of a recipe



Table I: Comparison between the scheduling of 450 production
recipes, using a classical RTN-based representation against the pro-
posed hierarchical modeling approach.

Param
RTN

Representation

Hierarchical

Representation
Diff. (%)

Cycle Time 20:56:19 (h) 20:17:23 (h) -3,1%

Avg. Change
Overtime

5:42:47 (h) 5:05:16 (h) -10,95%

Avg.
Utilization

74,47% 80,85% +6,38%

Throughput 235,96 (u) 245,75 (u) +4,14%

Avg. Time To
Complete HP

1:02:08 (h) 0:57:08 (h) -8,07%

Avg. Time To
Complete LP

2:19:25 (h) 2:16:45 (h) -1,92%

in sub-tasks means partitioning the time necessary to complete

such a task. Therefore, the algorithm is able to fill machines

downtimes with sub-tasks of different tasks or even of different

recipes. As a consequence, the throughput also increases due

to the algorithm ability to fill the production line’s execution

time-span more efficiently. Lastly, the last two rows compare

the average time to complete production recipes at high

priority (HP) and low priority (LP). The completion time for a

recipe is calculated as the difference between the time instant

in which the last task ends and the time instant in which its

first task starts. While reducing the completion time for both

new high and low priority orders, the proposed representation

allows handling more efficiently the arrival of new higher

priority orders. In general, the scheduler routine in charge

of managing the priorities of the tasks is able to handle

more accurately the allocation of sub-tasks whether certain

conditions are met (e.g., required materials availability).

Nonetheless, such a methodology can be applied only to

manufacturing systems built both conceptually and concretely

around the concept of “service”. In fact, it assumes that

the various machines composing the plant are capable of

implementing and exposing functionalities enclosed in such

constructs. Furthermore, the presented work assumes that the

production domain (i.e., the type of manufacturing industry)

handles processes that can be interrupted, with materials tem-

porarily stored in buffers. Therefore, additional constraints and

aspects would be needed for this work to be applicable to the

production of non-durable goods (e.g., food and beverages).

VI. CONCLUSIONS

We presented a multi-level modeling approach to manufac-

turing processes. According to the service-oriented paradigm,

the model organizes hierarchically tasks, services and machine

functions. The modeling approach enables new production

schedulers able to reason on more comprehensive knowledge

about tasks implementation and machine allocation.

We assessed the proposed approach by modeling four pro-

duction recipes, and scheduling a high number of instances.

The results show that the proposed approach offers better

performances than a traditional methods. Overall, the achieved

increased efficiency should allow reducing the production

costs of the single units being produced.

REFERENCES

[1] R. Drath and A. Horch, “Industrie 4.0: Hit or hype? [industry forum],”
IEEE Industrial Electronics Magazine, vol. 8, no. 2, pp. 56–58, 2014.

[2] T. Lojka, M. Bundzel, and I. Zolotová, “Service-oriented architecture
and cloud manufacturing,” Acta polytechnica hungarica, vol. 13, no. 6,
pp. 25–44, 2016.

[3] S. Gaiardelli, S. Spellini, M. Lora, and F. Fummi, “Modeling in industry
5.0: What is there and what is missing: Special session 1: Languages
for industry 5.0,” in Proc. of Forum on specification Design Languages

(FDL), 2021, pp. 01–08.

[4] G. P. Georgiadis, A. P. Elekidis, and M. C. Georgiadis, “Optimization-
based scheduling for the process industries: From theory to real-life
industrial applications,” Processes, vol. 7, no. 7, 2019. [Online].
Available: https://www.mdpi.com/2227-9717/7/7/438

[5] L. Davis et al., “Job shop scheduling with genetic algorithms,” in Proc.

of international conference on genetic algorithms and their applications,
vol. 140, 1985.

[6] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for
the flexible job-shop scheduling problem,” Computers & operations

research, vol. 35, no. 10, pp. 3202–3212, 2008.

[7] A. Rajabinasab and S. Mansour, “Dynamic flexible job shop scheduling
with alternative process plans: an agent-based approach,” The Interna-

tional Journal of Advanced Manufacturing Technology, vol. 54, no. 9,
pp. 1091–1107, 2011.

[8] J. Błażewicz, W. Domschke, and E. Pesch, “The job shop scheduling
problem: Conventional and new solution techniques,” European Journal

of Operational Research, vol. 93, no. 1, pp. 1–33, 1996.

[9] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,”
Theoretical Computer Science, vol. 344, no. 2, pp. 243–278, 2005.

[10] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: An
overview,” Swarm Intelligence, vol. 1, 10 2007.

[11] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for nu-
merical function optimization: Artificial bee colony (ABC) algorithm,”
Journal of Global Optimization, vol. 39, pp. 459–471, 11 2007.

[12] M. Affenzeller, S. Winkler, S. Wagner, and A. Beham, “Genetic algo-
rithms and genetic programming,” 03 2009.

[13] J. Heizer, Production and Operations Management. Allyn and Macon,
Needham Heights, Massachusetts, 1991.

[14] S. Nahmias, Production and operations analysis. McGraw-Hill, 2015.

[15] H. Askari Nasab, Y. Pourrahimian, E. Ben-Awuah, and S. Kalantari,
“Mixed integer linear programming formulations for open pit production
scheduling,” Journal of Mining Science, vol. 47, pp. 338–359, 05 2011.

[16] Y. Krotov, “Csp production planning system,” AISTech - Iron and Steel

Technology Conference Proceedings, vol. 2, pp. 767–772, 01 2006.

[17] O. Cardin, D. Trentesaux, A. Thomas, P. Castagna, T. Berger, and
H. Bril, “Coupling predictive scheduling and reactive control in man-
ufacturing hybrid control architectures: state of the art and future
challenges,” Journal of Intelligent Manufacturing, vol. 28, no. 7, 2017.

[18] C. C. Pantelides, “Unified frameworks for optimal process planning and
scheduling,” in Proceedings on the second conference on foundations of

computer aided operations, 1994, pp. 253–274.

[19] E. Kondili, C. Pantelides, and R. Sargent, “A general algorithm for short-
term scheduling of batch operations—i. milp formulation,” Computers

& Chemical Engineering, vol. 17, no. 2, pp. 211–227, 1993.

[20] I. Harjunkoski and R. Bauer, “Sharing Data for Production Scheduling
Using the ISA-95 Standard,” Frontiers in Energy Research, vol. 2, 10
2014.

[21] N. Schmidt and A. Lüder, “AutomationML in a Nutshell,” 2015.

[22] S. Spellini, S. Gaiardelli, M. Lora, and F. Fummi, “Enabling component
reuse in model-based system engineering of cyber-physical production
systems,” in Proc. of IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), 2021, pp. 1–8.

[23] L. Berardinelli, S. Biffl, A. Lüder, E. Mätzler, T. Mayerhofer, M. Wim-
mer, and S. Wolny, “Cross-disciplinary engineering with AutomationML
and SysML,” at - Automatisierungstechnik, vol. 64, pp. 253 – 269, 2016.

[24] “OPC Unified Architecture specification – Part 1: Overview and con-
cepts release 1.04 OPC Foundation,” 2017.



[25] S. Gaiardelli, S. Spellini, M. Panato, M. Lora, and F. Fummi, “A software
architecture to control service-oriented manufacturing systems,” in Proc.

of IEEE/ACM Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2022, pp. 1–4.


