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Abstract—Manufacturing lines are evolving into complex
cyber-physical production systems. However, their growth in
complexity is not matched by the development of structured
modeling and design methodologies. In particular, approaches
exploiting both models typical of the manufacturing domain and
models used by computer engineers are still missing.

In this work, we outline a design flow contemplating the reuse
of already existing manufacturing lines’ models, while designing
novel advanced production systems. To enable such a flow, we
propose a methodology extracting System Modeling Language
(SysML) structural diagrams from AutomationML descriptions.
Then, we propose to design the system functionalities on top of
the produced diagrams.

The paper shows the application of the methodology to a
concrete manufacturing line, the structure of which was originally
modeled using AutomationML. To exemplify the advantages
of the methodology, we exploit the models being generated to
automatically extract a digital twin for the production system
transportation line. The resulting digital twin is compliant with
a well-known plant simulation tool.

I. INTRODUCTION

Today’s manufacturing trends are constantly enriching tradi-
tional production systems with computational and communi-
cation infrastructures, transforming manufacturing lines into
every day more complex systems. These recent trends are
framed within the so-called “fourth industrial revolution” [1],
i.e., the transformation of production lines into Cyber-Physical
Production Systems (CPPSs). Indeed, such a transformation
introduces unprecedented challenges in the design of manu-
facturing systems [2], as it requires the ability of designing
systems while considering either the production processes, as
well as the complex computational infrastructure monitoring
and controlling the production processes.

The ongoing transformation of production lines into CPPSs
is particularly problematic for Small and Medium Enter-
prises (SMEs). While a large manufacturing corporation may
consider redesigning their production plants from scratch to
incorporate novel technologies, SMEs are often forced to
gradually introduce intelligence in their already existing lines.
Furthermore, companies must be able to evaluate in advance
the impact of re-designing their production lines. As such, it
is necessary to develop modeling and design flows such as
the one summarized in Figure 1, based on the Platform-Based
Design (PBD) paradigm [3]. The methodology must support
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Figure 1: Conceptual view of the proposed design flow for CPPSs,
and placement of the proposed model reuse methodology (cyan
triangle) within the design flow.

both the fop-down modeling of requirements and functional-
ities, as well as the bottom-up reuse of components already
existing in the system and available to designers. Core to the
methodology should be a language able to capture concepts
belonging to both “cyber” and “physical” concepts of today’s
production systems. We chose to rely on the System Modeling
Language (SysML) [4] for such a task, as it provides a variety
of heterogeneous diagrams able to capture structure, behavior
and requirements of systems. Once models encapsulate all this
information, they enable system refinement and design space
exploration through model analysis, as well as implementation
and simulation exploiting code generation.

SysML is central in the described approach as it acts
as a unified representation and modeling language for the
entire system design process. Indeed, it is well suited for
the top-down phase due to its focus on modeling and user-
friendliness. However, it falls short when used to carry infor-
mation about already existing components. For this reason, in
the past, methodologies have been developed to convert and
import already existing domain-specific models into SysML
models. This task has been already carried out extensively
for software [5] and hardware [6] components, and network
infrastructure [7] enabling modeling of Cyber-Physical System
(CPS). To enable the design of CPPSs, it is necessary allowing
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to import models of already existing machines.

For this reason, we propose a methodology to extract
information from Automation Markup Language (Automa-
tionML) [8] models of production lines to produce SysML
structural diagrams to be used for the design of CPPSs.
AutomationML has been introduced in 2006 as a data ex-
change language to store models useful at describing different
aspects of manufacturing systems, becoming soon a standard
de-facto for the modeling of production lines [9]. Then,
the obtained SysML models are integrated through a top-
down modeling phase which is meant to describe the aspects
that AutomationML specifications failed to capture about the
system. Finally, the produced SysML models are exploited to
build a digital twin of the production system.

Section II presents the state of the art in CPPS modeling,
and the background on AutomationML. Then, throughout the
paper, the methodology is applied to the transportation sub-
system of a full-size production line introduced in Section III,
along with the guidelines of the intended modeling approach.
Section IV details the methodology producing SysML models
by reusing AutomationML specifications. Section V shows
how the generated models may act as a library of components
and as a platform for the top-down modeling phase of PBD.
Then, in Section VI we exploit the produced models to
generate the industrial plant’s digital twin. Finally, we draw
some conclusions in Section VII.

II. PRELIMINARIES

AutomationML is an XML-based data format to exchange
information describing manufacturing system [10]. Different
standards are intertwined within AutomationML to describe
multiple aspects of production plants: from topology to the
logic controlling machines’ microcontrollers.

The Computer Aided Engineering Exchange (CAEX) (IEC
62424) standard provides to AutomationML the features re-
quired to represent a topological view of the system, i.e.,
relations between objects, such as types of machinery and ma-
terials. It is object-oriented [11] as it provides system objects’
semantics using roles which are defined by role class library.
Role classes express the abstract functionality representation
of objects, without specifying their implementations. As an
example, a “resource” is a role for an object, and can be
further detailed to represent a piece of equipment or material.
Concrete resource instances are typically specified by system
unit classes usually containing vendor-specific AutomationML
objects. Relations between objects are specified within the
interface classes library. AutomationML descriptions hierar-
chically organized within a AutomationML description. In par-
ticular, AutomationML’s core is the instance hierarchy storing
the hierarchy of components and sub-components composing
the system.

Concerning the system behavior, the COLLAborative De-
sign Activity (COLLADA) interchange standard, incorporated
in AutomationML, allows specifying information about three-
dimensional shapes and the kinematics of the system. Thus, it
is focused on the mechanical behavior of the system. PLCopen
is the standard embedded within AutomationML to describe
the logic behavior of the system. It allows specifying simple

behaviors expressed by impulse diagrams, sequence function
charts, logic networks, state charts, Gantt and Pert charts.

A. State of the art in production system modeling

In the context of manufacturing and CPPSs, Model-based
System Engineering (MBSE) is a quite popular approach to
support the design and the development lifecycle. Authors in
[12] propose a specialization of SysML to support the de-
velopment of automation software (i.e., Programmable Logic
Controller (PLC) software) for manufacturing systems. Then,
they suggest a methodology to automatically generate control
software from SysML models of the production plant. [13]
proposes to use an AutomationML-based model to create
“Plug-and-Produce” facility components, which integrate in-
formation about their production capabilities. In this regard,
the production resources composing the manufacturing system
are modeled in terms of their ability to produce a particular
product or to implement a required production “Skill”. As
such, AutomationML includes the necessary constructs to
model such a system viewpoint. The work proposed in [14]
presents an extension of Unified Modeling Language (UML)
to support the modeling of mechatronic components and
Internet-of-Things (IoT) production environments. Therefore,
manufacturing system components are adjoined with IoT in-
terfaces at a modeling stage, facilitating their latter integration.

A systematic review [9] of modeling languages for manufac-
turing highlighted a gap between the involved research com-
munities. In particular, system engineering and knowledge-
representation languages are widely used in this field, however
rarely combined. The survey also found out that Automa-
tionML and the UML (which is the root of SysML) are quite
popular in the field. However, they are rarely used together
and the reuse of existing models is hardly tackled.

To the best of our knowledge, the only approach combining
AutomationML models and SysML has been proposed in [15].
The authors investigate the commonalities and differences be-
tween the structural modeling provided by the two languages.
They also propose a SysML profile and an AutomationML
metamodel, to boost languages’ interoperability. While their
objective of reusing models is common to this work, our
approach exploits AutomationML models reuse in a PBD
framework. As such, it considers also other modeling and
system’s aspects, such as behavioral and parametric facets,
implemented in corresponding SysML diagrams. Furthermore,
the reuse of AutomationML models is implemented using
a direct one-to-one mapping between AutomationML and
SysML standard elements. As such, it avoids using a SysML
custom profile and additional stereotypes.

III. MOTIVATIONS AND OVERVIEW

When dealing with today’s production systems, the bare
manufacturing plant is not the only aspect to consider. For
this reason, concerning modeling, the most obvious limitation
of AutomationML is the lack of expressiveness to model ad-
vanced functionalities making plants smart. Neither the com-
putational infrastructure nor the information flowing through
the system’s machinery can be represented by AutomationML
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Figure 2: Structure of the advanced manufacturing production line
used as a case study in this work. The machines are connected through
an articulated software-controlled transportation mechanism.

models. Indeed, PLCopen allows modeling control logic. How-
ever, its constructs are not suitable to model anything more
complex than control software running on PLCs.

AutomationML expressiveness is limited also when specify-
ing manufacturing functionalities. While it supports structural
modeling through CAEX and kinematic modeling through
COLLADA, it does not provide constructs useful to spec-
ify actions and primitives provided by the single machines
composing the systems. The lack of primitives to express
machinery’s behavior in terms of actions makes it difficult
to specify production processes recipes. While it is possible
specifying which products, resources and processes are related,
AutomationML does not allow specifying how a process is
structured to transform a resource into a product.

For all these reasons, design flows for CPPS require more
expressive languages than AutomationML. However, manufac-
turing systems engineers are already confident with Automa-
tionML. Furthermore, many AutomationML descriptions are
already available for existing manufacturing systems, and the
standard is popular also among researchers [9], [16]. Thus,
while searching for novel design and modeling approaches,
we advocate the importance of letting system designers and
engineers continue using their languages of choice. Such
a feature has already been investigated when dealing with
CPSs [17]. However, the reconciliation to a single language
of the production viewpoint of CPPSs has never been pro-
posed. For this reason, we aim at enabling the integration of
existing AutomationML models within SysML-based design
flows. AutomationML descriptions of existing manufacturing
systems are analyzed and used to generate SysML models.
Then, generated models can be used by designers to carry
on the top-down phase of designing a CPPS. In this way,
the designers can model novel functionalities and refine them
onto the model of the already existing architecture. The
proposed methodology enable better modeling features for
designer to tackle advanced manufacturing systems design,
while preserving already existing models of systems.

The paper proposes a methodology implementing the
bottom-up phase and shows the application of the generated
models. The presentation of the methodology is paired with
its application to the design of a complex conveyors system.

A. Case study: conveyors system

The case study is based on the materials and products
transportation subsystem of the production line available at our
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Figure 3: Bottom-up reuse of existing models. While the computa-
tional components of the system are reused by applying state-of-the-
art methodologies, the production plant model, originally expressed as
a AutomationML description, is incorporated into the SysML model.

research facility!. The production line structure is depicted in
Figure 2. It is composed by multiple machines connected by
multiple conveyor belts, controlled by computational devices
connected through a communication network.

The transportation system is made by a closed-loop main
conveyor belt. Multiple conveyor bays are linked to the main
belt in order to move the materials from the transportation
system to the machines and back. The passage of material
between the main belt and each bay is managed by a switching
mechanism that is guided by sensors detecting and identifying
the minipallets moving around the production system.

IV. REUSING MANUFACTURING SYSTEMS MODELS

AutomationML models, built upon the CAEX standard,
depict the manufacturing system’s structure: the components
composing the production line and their relations. As such,
they can be exploited for the bottom-up phase of the proposed
PBD approach, to construct the structural part of SysML
models. As depicted in Figure 3, the methodology hereby
described creates the production plant model alongside the
computational infrastructure model, within the same SysML
description. This is a fundamental feature, enabling models’
reuse and boosting the design process for complex systems.
To accomplish such a task, we propose a mapping between
the two languages. Table I reports the mapping: the Au-
tomationML elements are categorized in libraries, instances,
classes, objects and relations. The table reports, for each
AutomationML element, the corresponding SysML elements.

The main component in an AutomationML model is the
class: it is typically organized in libraries, depending on
the concept or component it represents. In this regard, Au-
tomationML defines three different libraries: the SystemUnit-
ClassLib, the RoleClassLib and the InterfaceClassLib. The
SystemUnitClassLib represents system components and their
relationships. The RoleClassLib encapsulates semantic classes
that are associated to objects, while the InterfaceClassLib
allows defining the type of communication between elements.

Uhttps://www.icelab.di.univr.it/



Table I: Mapping of AutomationML elements to SysML objects.

| AML Element | SysML Element

SystemUnitClassLib Block
Libraries RoleClassLib Definition
InterfaceClassLib Diargam
Instances [ InstanceHierarchy [ Internal Block Diagram
SystemUnitClass
Classes RoleClass Block
InternalElement
InterfaceClass InterfaceBlock
Attribute Property
Objects Internal Link Connector
ExternalInterface Port
BaseClass — Class Generalization
Relations RoleRequirements — Class Realization
SupportedRoleClass — Class Realization

A AutomationML library is directly mapped to a SysML
Block Definition Diagram (BDD), characterizing the hierar-
chy of system components (i.e., blocks) and their relations.
AutomationML classes frequently enclose attributes to fur-
ther specify components’ properties or parameters. As such,
an AutomationML attribute is mapped to a SysML block
property, typed accordingly to the attribute type. Assigning
the correct type to an attribute is not trivial: AutomationML
provides a small set of native types (i.e., integer, real), but
in case a physical dimension (i.e., velocity or temperature), a
workaround is needed to specify their units of measure.

AutomationML implements different relationships between
classes: a AutomationML system unit class might be either
a base or a specialized class inheriting attributes from a
superclass. The inheritance relation is mapped and represented
in SysML through the Generalization connector. In addition,
at least one role class must be associated with a class or to
an InternalElement, which is a class instance. As such, the
RoleRequirement construct represents the requirement that a
specific role must be associated with the element. Furthermore,
an element associated with multiple roles includes multiple
SupportedRoleClass AutomationML relationships. In this con-
text, SysML handles roles as abstract classes. Therefore, the
association of a role class to a class or an internal element is
mapped to the realization relation between SysML blocks.

The AutomationML Externallnterface defines an interface
to an external object or class. An interface is typed by an
InterfaceClass, which encapsulates user-defined attributes to
characterize the communication. The InterfaceClass is imple-
mented as an InterfaceBlock in SysML, which belongs to the
BDD defining the model’s interfaces. The InterfaceBlock is
used to type a Port object directly acquired from Externalln-
terfaces composing the class or the specific InternalElement.

The InstanceHierarchy is a central section of Automa-
tionML: it structurally defines class instances and object
connections between Externallnterfaces. We correlate this con-
cept to the Internal Block Diagram (IBD) of SysML, where
instances of classes are related to each other through Ports.
As such, AutomationML Externallnterfaces typed by Inter-
faceClasses and connected using InternalLinks, are mapped
to SysML Ports, typed by InterfaceBlocks and connected
with Connectors. An important limitation of AutomationML

InternalLinks is the lack of expressivity: they do not allow
specifying the kind of information passing through the ports
being connected. As such, they only represent the connection
between elements, without providing any further information.

A. Basic Components

Figure 4 illustrates the components of a portion of our
conveyor system: a conveyor gate, which stops the minipallet,
reads its id and deviates it in the conveyor bay whether
necessary. Otherwise, the pallet is unlocked and can continue
its journey through the main conveyor.

The gate is composed of a minipallet stopper, locking the
minipallet in a specific position of the main conveyor. Then,
an RFID reader reads a tag fixed on the minipallet frame
and, once the supervisor produces a response, the stopper
deactivates. Then, a special conveyor, moving along two axes,
configures itself to let the unit in the conveyor bay or to let the
minipallet flow throughout the gate. As depicted in Figure 4b,
the SystemUnitClassLib BayGate Breakdown consists of a
SystemUnit class for each component. It includes a set of
base classes of simple components: the Stopper and the
RFID_Reader. The library also defines a subclass: the Switch
class, which is a specialization of the Conveyor base class,
inheriting the length and the velocity attributes. Exploiting
such a relationship between classes allows the extension of
the subclass with additional class members, such as external
interfaces. In particular, the Switch class extends the Conveyor
class by defining three Externallnterface objects. The External-
Interface type is defined by the Port InterfaceClass specified
in an InterfaceClassLib. Finally, the BayGate, which is the
primary class in the hierarchy, includes port-typed external
interfaces and instances of components as class members.
Each class has one or multiple associated roles, defined in a
RoleClassLib. In this scenario, three role classes are sufficient
to represent the semantic category of each object composing
the system: Computation, Manipulation and Transportation.

Each library defined in AutomationML is translated to a
SysML BDD. For the sake of clarity, in Figure 4a only
the “BayGate Breakdown” and “Interface Lib.” diagrams are
depicted, omitting the “SysML-RCL” BDD. The entire set of
classes defined in AutomationML is mapped to blocks related
to each other according to inheritance and composition rules.
The block “Conveyor” is, in fact, in a Generalization relation-
ship with the “Switch” class, that is, in turn, associated to the
“BayGate” block in a membership relationship. Therefore, the
“Switch” class becomes a property “part” of the “BayGate”.
Class attributes are transformed to block properties (which be-
come “Values” properties once typed) and Externallnterfaces
become “Ports”, typed by an interfaceBlock. Role classes are
related to other classes using the “Realization” connector. As
an example, the “BayGate” class is associated to both the
“Computation” and the “Transportation” roles.

B. System Structure

The AutomationML [InstanceHierarchy is a hierarchical
structure of objects called internalElements, which are in-
stances of classes specified in the AutomationML libraries.
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Figure 4: Visual representation of the mapped objects between AutomationML and SysML, to define the system components. (b) describes
AutomationML libraries of SystemUnit classes, roles and interfaces, while (a) depicts the BDD derived from such object classes.
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Figure 5: The system and components structure represented in an IBD (b), derived from the AutomationML InstanceHierarchy (a).

Each object’s semantics is defined by associated roles. Fur-
thermore, the object’s interfaces to other objects are concretely
used to represent object to object connections, other than
simply declared. Regarding the conveyor gate example, the
structure of the “BayGate”, depicted in Figure 5b, is consistent
with the class defined in the SystemUnitClassLib. However,
it is also further characterized by defining the connections
between interfaces of its sub-components. In this regard,
InternalLinks are used to connect ports of the gate components
set. The instantiation of a class in the hierarchy also includes
assigning a value to its set of attributes.

Parts, ports and values are specialization of the type Prop-
erty in SysML. For this matter, the purpose of the IBD is to
define the internal structure of a Block by means of properties
and relationships between properties. The IBD depicted in
Figure 5a is built upon the BayGate internalElement. Since

the internalElement is an instance of a class, it carries the
same structure of the related block defined in the BDD.
Consequently, class members such as properties, parts and
ports are instantiated and are associated with the corresponding
block. In the IBD, InternalLinks between externallnterfaces
become connectors between ports.

V. TOP-DOWN MODELING

The SysML models generated from AutomationML de-
scriptions are barebones: they delineate the basic structure
of objects with no functionality attached. Furthermore, the
communication between objects is not exhaustively defined.
As discussed, the reason for such a shortcoming is related to
the lack of expressivity of the AutomationML language. On
the other hand, SysML does provide multiple constructs to
enrich the diagrams obtained from the bottom-up phase. As
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Figure 6: Top-down phase: the proposed methodology allows building
the “platform” on top of which is possible specifying the functional-
ities and the requirements of the system being designed.

such, as summarized by Figure 6, the barebones models acts
as a platform to be refined by the designer, by expressing a
larger set of information regarding the system to specify in-
tended functionalities and requirements. Furthermore, SysML
provides other diagrams useful to model many more details
of different systems’ aspects and viewpoints. For example,
behavior diagrams such as the activity diagram focus deeply
on the system dynamic, specifying sequences of events. In this
Section, we show the applicability of the models generated in
the previous section to support a complete CPPSs design flow.

A. Components Communication Modeling

Figure 7b reports the manually refined IBD of Figure 5a:
item flows have been added above simple connectors. This
step enables specifying the type of information or object
flowing between ports. Thus, it allows defining a piece of
functionality performed by the system architecture. In fact, by
determining the kind of objects passing through a connection,
the connection itself is refined from an abstract concept to a
concrete object. As an example, a communication network is
very different from a physical object that connects two points
in the physical space. However, AutomationML does not have
the required expressivity to detail such a set of information
that is crucial in today’s production systems.

The diagrams in Figure 5a model exclusively the archi-
tecture of the gate component, without specifying object
flows between one sub-component and another. The Figure 7b
depicts a refined version of the original IBD, defining the
type of communication other than outlining the direction
of the flow of objects. Applying this modeling approach,
it is possible to discriminate between physical objects and
information. In the example, the MiniPallet block represents
the object moving through the physical components of the
conveyor system. Meanwhile, the RFID_Tag is the unique
identifier of a MiniPallet object. The main difference between
these two objects is that they belong to different domains: the
minipallet is a physical object, while the RFID tag carries a
piece of information that is purely digital. As such, the channel
on which these entities move is substantially different. The
ability to define components has been enabled by moving the
modeling of the system from AutomationML to SysML.

The Stopper modeled in Figure 7b acts as the contact point
between the plant and the computational platform, carrying

out two types of communication. The inward object flow in
its input port is typed by a MiniPallet block, which represents
a physical object. Then, it has two output ports: the p_stRf
and the p_sOut ports. While both output ports share the same
type, they accept different flows of objects: the first accepts a
digital RFID_Tag object (highlighted in red in Figure), while
the second accepts the flow of a physical MiniPallet object.

B. Components Behavior Modeling

Behaviors can be determined in SysML by associating an
operation to a block of a BDD. Each operation is conceptually
similar to a function and is represented as a class method.
Therefore, an operation is defined by a set of input parameters
and a return value and the model of its behavior. A parameter
can be typed by a native type or by another block. The activity
diagram depicted in Figure 7a represents the sequence of
actions following the arrival of a minipallet at the gate and the
decision process that establishes whether it has to be pulled
inside the attached bay or it has to be released. The activity
diagram separates the types of flows, outlined by arrows
between entities, depending on the kind of information they
carry: if the flow represents the transfer of control between
actions, it is called “control flow”, while if the flow serves
as the movement of objects, it is called “object flow”. Each
action in the diagram is a call to an operation defined in
the corresponding block of the BDD. As an example, the
readld action, which is the first action of the activity, takes
as an input parameter an RFID_Tag object. As such, the flow
between the inMP object (i.e., an instance of the MiniPallet
block definition) and the readld action is an object type.

The minipallet destination is decided on the ID of the RFID
tag and is implemented through a couple of decision nodes,
connected with control flows: if the ID is the wrong one,
the pallet is released on the main belt, otherwise, the control
passes to another decision node. This entity is in charge of
determining whether the bay is free. In such a case, the stopper
is released and the pallet is pulled in the bay by the getinPallet
function of the Switch component. In the other scenario, the
ingoing minipallet waits for the completion of the previous
production operation and the clearance of the bay from the
OutMP minipallet. Then the ingoing minipallet is pulled in.

While this diagram portrays a simple scenario for demon-
stration purposes, the complexity of such a kind of modeling
constructs enables the specification of intricate behaviors. The
expressiveness guaranteed by SysML allows to overcome the
limitations of the AutomationML structure and, thus, empow-
ers the modeling of modern intelligent production systems.

VI. EXPLOITING MODELS FOR CPPS DESIGN

The underlying heterogeneity of SysML is well-suited to
represent and model CPPSs. Modeling tools based on SysML,
other than providing a clear and intuitive environment, are
easily extensible, thus enabling customized generation of code
for any simulator of choice. In this Section, we report our
experience in generating the code necessary to simulate the
case study within Tecnomatix Plant Simulation, a well-known
production line simulation tool distributed by Siemens.
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Figure 7: Refined SysML models defining functionalities and overcoming AutomationML expressiveness limitations. (a) activity diagram in
SysML characterizing components’ behaviors. (b) The refined IBD with additional information about object flows and directions.

The automatic instantiation of a simulation within Plant
Simulation is a two-phased task:

o Structural information extraction: the XMI storing the
SysML model is parsed to capture the plant topology,
i.e., the line’s components, their positions in space and
interactions. The acquired information is used to produce
a SimTalk script instantiating the components inside the
simulation environment and connected with each other.

e Behavioral information extraction: code generators for
the most popular programming languages (i.e., C/C++,
Java and Python) are provided by all the UML/SysML
editors available today. We exploit the automatic C code
generation to translate the behavioral diagrams into a
C implementation. The implementation is then compiled
into a dynamic linked library and imported within Plant
Simulation using an Application Programming Interface
provided by the simulator.

Figure 8 shows the Plant Simulation model being generated
using the models produced by applying the proposed method-
ology. Figure 8a shows the 3D model of the transportation
system being simulated within Plant Simulator. Meanwhile,
Figure 8b depicts the internal model of a single conveyor gate
of the transportation system. The latter is automatically gen-
erated by applying the proposed methodology to the SysML
IBD in Figure 7b, which has been automatically generated
by extracting the information contained in the AutomationML
description reported by Figure 5b. The protocol used by the
objects depicted in Figure 8b is automatically synthesized from
the activity diagram in Figure 7a. Thus, the simulation of
each conveyor gate evolves accordingly to the model specified
during the top-down phase of the presented approach.

To understand the size of the problem, Table II characterizes
the modeling dimensions of the case study. It reports the char-
acteristics of the original AutomationML description in terms
of lines of code, defined classes and internal links, and the
characteristics of the SysML extracted from the AutomationML
(i.e., bottom-up). It also reports the number of BDD, IBD
and lines of XMI code in the generated model, the number
of activity diagrams and state machine diagrams manually

(a)
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Figure 8: The simulation models in the Plant Simulation environment,
derived from SysML. (a) The 3D model of the transportation system.
(b) The internal structure of a conveyor gate.

specified by the designer in SysML (i.e., top-down). Finally,
it details the number of lines of C++ code automatically
generated from the model.

Models generated through the proposed methodology may
be used for many other purposes within the design flow of
industrial production systems that we summarizes hereby.

a) Verification and Validation: to evaluate the correct-
ness of requirements and behaviors by models is crucial for
mission-critical applications, such as industrial systems [18].
So far, methods for the verification and validation of SysML
models rely either on formal methods or simulation [19].



Table II: Characteristics of the system original descriptions, and of
the models generated by applying the proposed approach.

Lines of Code 13372
. Libraries 8
AutomationML CTasses 33
Internal Links 47
Block Definition Diagrams | 8
(Sby 11:4];1 ) Internal Block Diagrams 7
ottom-up XMTI Lines of Code 6326
Activity diagrams 3
(St)(/) SI}/ggwn) State Machine diagrams 1
P XMI Lines of Code 3115
Generated C++ | Lines of Code 167

b) System Analysis and Optimization: accurate system
models may be used to perform in-depth analysis and op-
timizations. Design-space exploration is intrinsic concept of
any PBD flow, that may be performed on top of sufficiently
expressive SysML models [20]. Optimization problems and
formal models can be built on top of SysML models [21],
[22] and then resolved exploiting existing solvers.

c) Code Generation and Implementation: SysML ex-
pressiveness is not limited to software: it is also efficient at
capturing features of hardware components and their interac-
tions with the software components. Thus, it may become a
fundamental tool to support hardware-software integration. For
instance, SysML models may come in handy while integrating
a Manufacturing Execution System into a production line [23].

SysML also allows the generation of control software start-
ing from diagrams composing a system model. In particular,
SysML diagrams can be used to generate the templates for
PLC software consistent with the IEC 61131-3 standard [24]
to be later deployed on the system.

VII. CONCLUSIONS

This paper identified some limitations of the current state
of the practice on modeling for manufacturing systems. In
particular, the paper focused on the limitations of a promi-
nent language for the description of production systems (i.e.,
AutomationML). Then, while we recognize the importance of
allowing designers to keep using the languages of their choice,
we advocate the necessity of introducing more sophisticated
modeling languages and structured methodology for the design
of advanced production systems based on CPPSs.

Thus, we proposed the use of PBD as the methodological
framework, and SysML as specification language. Then, we
presented a methodology to automatically produce SysML
models from AutomationML descriptions. We presented the
mapping, and we applied it to a real-world industrial trans-
portation system to generate its SysML model from its Au-
tomationML description. Then, we extended the model to
specify its functionalities. Finally, we applied automatic code
generation to produce simulation models for a widely used
industrial processes simulator, and presented other possible
uses of the models produced by the presented methodologies.
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